French Technology & Innovation

Onboard Hydrogen: Is This The Future Of Zero Emission Vehicles?

Last week I wrote an article — Water Is Not A Fuel — discussing a press release I had received from Australian-Israeli startup Electriq~Global.

As I noted in that article, it wasn’t my intent to criticize the company’s technology, but rather to explain how a person should approach these sorts of press releases.

In general, one should apply a healthy dose of skepticism, and then ask a number of critical questions.

This press release didn’t go into enough details to ascertain the credibility of the technology, but I was subsequently contacted by the company to clear up my questions.

I spoke with Electriq~Global CEO Guy N. Michrowski. Much of what I suspected is true. The “fuel” in this case is a hydride, specifically potassium borohydride (KBH4).

This compound stores hydrogen, but it also reacts with water to release hydrogen.

Consistent with the laws of thermodynamics that I touched upon last week, the energy content of the hydrogen that is ultimately released had to be first put into the potassium borohydride.

What I did not know is that unlike some hydrides, potassium borohydride can be stored in water without a reaction. There is, indeed, a catalyst that is separate from the potassium borohydride that causes the reaction with water.

I had assumed a two-part system: Water and a hydride, in which water comes in contact with the hydride and reacts to release hydrogen.

Theirs is a three-part system: Hydride is dissolved in water, and then there is a separate catalyst that causes the hydride to react with water, releasing some hydrogen from the hydride and some from the water.

The catalyst remains on board, and some of the water/hydride solution is brought into contact with the catalyst to produce hydrogen on demand.

After all of the solution has been processed, it is returned for replacement and regeneration (which involves dehydrating the fuel). They expect the catalyst to need to be replaced every year, but still need to do more catalyst lifetime studies.

I asked about costs and range, and Guy emphasized that they are still at an early stage, but he could make some projections.

He said that the goal from the Department of Energy for competitive hydrogen is $6 per kilogram at the pump. He believes they will be able to produce hydrogen for $4 per kilogram on board the vehicle.

Related posts

Assurance : hausse de 4,4% du chiffre d’affaires de la SAA en 2018

Meissa Cheikh

Pétrole : les efforts conjoints des pays à l’origine de la stabilisation des marchés

Meissa Cheikh

Un partenariat historique entre Microsoft et Sony à propos du cloud gaming

Meissa Cheikh

Leave a Comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More